Security.com

digital signature

By Alexander S. Gillis

What is a digital signature?

A digital signature is a mathematical technique used to validate the authenticity and integrity of a digital document, message or software. It's the digital equivalent of a handwritten signature or stamped seal, but it offers far more inherent security. A digital signature is intended to solve the problem of tampering and impersonation in digital communications.

Digital signatures can provide evidence of origin, identity and status of electronic documents, transactions or digital messages. Signers can also use them to acknowledge informed consent. In many countries, including the U.S., digital signatures are considered legally binding in the same way as traditional handwritten document signatures.

How do digital signatures work?

Digital signatures are based on public key cryptography, also known as asymmetric cryptography. Using a public key algorithm -- such as Rivest-Shamir-Adleman, or RSA -- two keys are generated, creating a mathematically linked pair of keys: one private and one public.

Digital signatures work through public key cryptography's two mutually authenticating cryptographic keys. For encryption and decryption, the person who creates the digital signature uses a private key to encrypt signature-related data. The only way to decrypt that data is with the signer's public key.

If the recipient can't open the document with the signer's public key, that indicates there's a problem with the document or the signature. This is how digital signatures are authenticated.

Digital certificates, also called public key certificates, are used to verify that the public key belongs to the issuer. Digital certificates contain the public key, information about its owner, expiration dates and the digital signature of the certificate's issuer. Digital certificates are issued by trusted third-party certificate authorities (CAs), such as DocuSign or GlobalSign, for example. The party sending the document and the person signing it must agree to use a given CA.

Digital signature technology requires all parties trust that the person who creates the signature image has kept the private key secret. If someone else has access to the private signing key, that party could create fraudulent digital signatures in the name of the private key holder.

What are the benefits of digital signatures?

Digital signatures offer the following benefits:

How do you create a digital signature?

To create a digital signature, signing software -- such as an email program -- is used to provide a one-way hash of the electronic data to be signed.

A hash is a fixed-length string of letters and numbers generated by an algorithm. The digital signature creator's private key is used to encrypt the hash. The encrypted hash -- along with other information, such as the hashing algorithm -- is the digital signature.

The reason for encrypting the hash instead of the entire message or document is because a hash function can convert an arbitrary input into a fixed-length value, which is usually much shorter. This saves time, as hashing is much faster than signing.

The value of a hash is unique to the hashed data. Any change in the data -- even a modification to a single character -- results in a different value. This attribute enables others to use the signer's public key to decrypt the hash to validate the integrity of the data.

If the decrypted hash matches a second computed hash of the same data, it proves that the data hasn't changed since it was signed. But, if the two hashes don't match, the data has either been tampered with in some way and is compromised or the signature was created with a private key that doesn't correspond to the public key presented by the signer. This signals an issue with authentication.

A digital signature can be used with any kind of message, whether or not it's encrypted, simply so the receiver can be sure of the sender's identity and that the message arrived intact. Digital signatures make it difficult for the signer to deny having signed something, as the digital signature is unique to both the document and the signer and it binds them together. This property is called nonrepudiation.

The digital certificate is the electronic document that contains the digital signature of the issuing CA. It's what binds together a public key with an identity and can be used to verify that a public key belongs to a particular person or entity. Most modern email programs support the use of digital signatures and digital certificates, making it easy to sign any outgoing emails and validate digitally signed incoming messages.

Digital signatures are also used extensively to provide proof of authenticity, data integrity and nonrepudiation of communications and transactions conducted over the internet.

Classes and types of digital signatures

There are three different classes of digital signature certificates (DSCs) as follows:

Uses for digital signatures

Digital signature tools and services are commonly used in contract-heavy industries, including the following:

Why use PKI or PGP with digital signatures?

Digital signatures use the PKI standard and the Pretty Good Privacy (PGP) encryption program, as both reduce potential security issues that come with transmitting public keys. They validate that the sender's public key belongs to that individual and verify the sender's identity.

PKI is a framework for services that generate, distribute, control and account for public key certificates. PGP is a variation of the PKI standard that uses symmetric key and public key cryptography, but it differs in how it binds public keys to user identities. PKI uses CAs to validate and bind a user identity with a digital certificate, whereas PGP uses a web of trust. Users of PGP choose whom they trust and which identities get vetted. PKI users defer to trusted CAs.

The effectiveness of a digital signature's security is dependent on the strength of the private key security. Without PKI or PGP, it's impossible to prove someone's identity or revoke a compromised key, and it's easier for malicious actors to impersonate people.

What's the difference between a digital signature and an electronic signature?

Though the two terms sound similar, digital signatures are different from electronic signatures. Digital signature is a technical term, defining the result of a cryptographic process or mathematical algorithm that can be used to authenticate a sequence of data. It's a type of electronic signature. The term electronic signature, or e-signature, is a legal term that's defined legislatively.

For example, in the U.S., the E-Sign Act passed in 2000 defined e-signature as "an electronic sound, symbol or process attached to or logically associated with a contract or other record and executed or adopted by a person with the intent to sign the record."

E-signatures are also defined in the Electronic Signatures Directive, which the European Union (EU) passed in 1999 and repealed in 2016. It regarded them as equivalent to physical signatures. This act was replaced with electronic identification authentication and trust services, or eIDAS, which regulates e-signatures and transactions, as well as the embedding processes that ensure the safe conduct of online business.

This means that a digital signature, which can be expressed digitally in electronic form and associated with the representation of a record, can be a type of e-signature. More generally, though, an e-signature can be as simple as a signature online, like the signer's name being entered in a web browser on a form.

To be considered valid, e-signature schemes must include the following three things:

  1. A way to verify the identity of the entity signing it.
  2. A way to verify the signing entity intended to affirm the document being signed.
  3. A way to verify that the e-signature is associated with the signed document.

A digital signature can, on its own, fulfill these requirements to serve as an e-signature:

While authenticated digital signatures provide cryptographic proof a document was signed by the stated entity and that the document hasn't been altered, not all e-signatures provide the same guarantees.

Digital signature security

Security is the main benefit of using digital signatures. Security features and methods used in digital signatures include the following:

Digital signature attacks

Possible attacks on digital signatures include the following:

Digital signature tools and vendors

There are numerous e-signature tools and technologies on the market, including the following:

Learn more about six e-signature software, including HelloSign, DocuSign and Adobe Acrobat Sign.

27 Feb 2023

All Rights Reserved, Copyright 2000 - 2024, TechTarget | Read our Privacy Statement